

Effet des impuretés sur l'endommagement induit par irradiation dans le tungstène

M-F. Barthe^a

Z. Hu (phD)^a, C. Genevois^a, P. Desgardin^a, B. Decamps^b, R.Schaeublin^c, F. Jomard^d, M Loyer Prost^e

^aCEMHTI, CNRS/Orléans University, 3A Rue de la Férollerie, 45071 Orléans, France ^bIJCLab/CNRS, Paris - Saclay University, France ^cMetal Physics and Technology Department of Materials, ETH Zürich, HCI G515, 8093 Zürich Switzerland ^dGEMac, Univ. Versailles, 45 avenue des Etats Unis, 78035 Versailles cedex, France ^eCEA-DEN-DANS/DMN/SRMP, Saclay, 91191 Gif-sur-Yvette cedex, France

- ✓ ITER, DEMO : W divertor, première paroi?
- Fusion réaction $^{2}H + ^{3}H \rightarrow ^{4}He(3,5 \text{ MeV}) + n (14.1 \text{ MeV})$ \checkmark

dpa : displacements per atom

ITER Tokamak

Modification de la microstructure et de la composition chimique **Evolution des propriétés thermiques,**

électriques et mécaniques des matériaux

(9.5dpa) [1]

Irradiation \rightarrow collision cascades, atomic displacements, defects, damage dose (dpa)

pka (primary knocked atom, recoil)

single vacancy (V) interstitials (SIA) and clusters (loops, cavities)

PAS : Positron annihilation spectroscopy
→ single vacancy to small cavity (< 1 nm)
TEM : Transmission electro Microscopy
→ cavities from 0.5-1 nm

Cemht

pka Irradiation with **W ions (self-irradiation)** to mimic neutron irradiation

PAS : Positron annihilation spectroscopy
 → single vacancy to small cavity (< 1 nm)
 TEM : Transmission electro Microscopy
 → cavities from 0.5-1 nm

Vacancy defects at RT

When damage dose (dpa) increases

Damage threshold :≈ 0.5 dpa

[1] A. Hollingsworth, MF Barthe et al JNM 558 (2022) 153373

2] P.M. Derlet and S.L. Dudarev, Physical Review Materials 4, 023605 (2020).

When damage dose (dpa) increases

[2] P.M. Derlet and S.L. Dudarev, Physical Review Materials 4, 023605 (2020).

EUROfusion

Irradiation-induced damage at high temperature

V cluster size *¬* drastically when irradiation temperature *¬*

high mobility of single and tri-vacancy at 500°C^[1-4]

 $E_{m^1}^{V_1} = 1.66 eV^{[1]}$

EURO*fusion*

[1] Becquart C.S et al. Nuclear Instruments and Methods in Physics Research Section B 2007.

[2] A. Debelle, M.F. Barthe, T. Sauvage, Journal of Nuclear Materials. 376 (2008) 216-221. https://doi.org/10.1016/j.jnucmat.2008.03.002.

[3] K. Heinola, F. Djurabekova, T. Ahlgren, On the stability and mobility of di-vacancies in tungsten, Nucl. Fusion. 58 (2018) 026004. <u>https://doi.org/10.1088/1741-4326/aa99ce</u>
 [3] D. Mason, D. Nguyen-Manh, C. Becquart, An empirical potential for simulating vacancy clusters in tungsten, Journal of Physics: Condensed Matter. 29 (2017). <u>https://doi.org/10.1088/1361-648X/aa9776</u>

→ agglomeration of V between them or on Vn directly generated in collision cascades

ITER Material Specification for W

Table 1 - Chemical composition of W plates

Element	Composition max, wt. %	Permissible variation in Check analysis, wt. %
С	0.01	±0.002
0	0.01	+10% relative
Ν	0.01	+0.0005
Fe	0.01	+0.001
Ni	0.01	+0.001
Si	0.01	+0.001

ITER Material Specification for W

Element	Composition max, wt. %	Permissible variation in Check analysis, wt. %
С	0.01	±0.002
0	0.01	+10% relative
N	0.01	+0.0005
Fe	0.01	+0.001
Ni	0.01	+0.001
Si	0.01	+0.001

Table 1 - Chemical composition of W plates

Light elements (LEs) 1100-1500 at. ppm

Vacancy interactions with LEs	Х	E_m^X (eV)	$ E_b^{V-X_1} (eV) $	$E_{diss}^{V-X_1}$ (eV)	*
DFT calculations	Н	0.21 (TIS-TIS) [24]	1.24 [25]	1.45	
	С	1.46 (TIS-OIS) [20]	1.93 [20]	3.39	
	Ν	0.73 (TIS-OIS) [26]	2.48 [21]	3.21	low high
	0	0.17 (TIS-TIS) [22]	3.05 [22]	3.22	
		<i>Light elemen</i> <i>impurities</i> (H,C,N			defects (single vacancy, vacancy-complexes and SIA).

[1] N. Castin, et al J. Nucl. Mater. 527 (2019); 1. Hirai, T. et al., Nuclear Materials and Energy 9, 616–622 (2016). 2 Greenwood. al 212–215, 635–639 (1994). 3 Computational Materials Science 184, 109932 (2020). 3 Liu. Computational Materials Science 50, 3213–3217 (2011). 4 You, Y.-W. et al. RSC Adv. 5, 23261–23270 (2015). 5 Alkhamees, A. et al. Journal of Nuclear Materials 393, 508–512 (2009). 6 A. Vehanen et al Phys Rev B 25 (1982) 762

M. F. Barthe, FR-FCM 2022 meeting, Montauban 19-20/05/2022

EURO*fusion*

For 2 purities 3N 99.95% and 6N 99.9999%

- Surface pollution (0- ~100nm)
- Heterogeneous distribution specially for oxygen in 3N

	Concentration (at. ppm)				
	3	6N 99.9999%			
Н	910 ^a		Ud		
С	460 ^a	~ 90	~ < 65		
Ν	130 ª		Ud		
0	345 ^a	1200 [105 : 3000]	~ 100		

a/ provided concentration by supplier corresponding to detection limits

More large vacancy clusters when purity A

→ WHY ?

Increase of swelling when purity *↗*

TEM confirms PAS results

JROtusion

Formation of smaller clusters in HP: why?

Vacancy mobile at 500 °C \rightarrow agglomeration to form larger vacancy clusters

but in 3N, this agglomeration is prevented : what could limit it?

	Concentration (at. ppm) 3N 6N		E_m^X	$E_b^{V_1-X_1}$	$E_{diss}^{V_1-X_1}$	
			6N	(eV)	(eV)	(eV)
Н	910 ª		Ud	0.21 (TIS-TIS) ^[1]	1.24 [1]	1.45
С	460 ^a	~ 90 b	~ < 65 ^b	1.46 (TIS-OIS) ^[2]	1.93 [2]	3.39
Ν	130 ^a		Ud	0.73 (TIS-OIS) ^[3]	2.48 [3]	3.21
0	345 ^a	1200 [105 : 3000] ^b	~ 100 ^b	0.17 (TIS-TIS) ^[4]	3.05 [4]	3.22

a/provided concentration by supplier corresponding to detection limits, *b*/measured value by SIMS

→ formation of V-complexes (V_m - C_{n_r} , V_m - O_n) in 3N sample? In particular V_mO_n

1 Yang, L. et al.Computational Materials Science 184, 109932 (2020). 2 Liu, Y.-L et al. Computational Materials Science 50, 3213–3217 (2011). 3 You, Y.-W. et al.. RSC Adv. 5, 23261–23270 (2015). 4 Alkhamees, A. et al. Journal of Nuclear Materials 437, 6–10 (2013). 357-63

TEM and PAS complementarity : PAS (Single vacancy \rightarrow small cavities), TEM (cavities > 0.5-1 nm)

Self-irradiation to mimic neutron irradiation

SIMS to analyse C and C in W

Irradiation at RT :

- majority of single vacancies and small clusters
- saturation at 0.5 dpa (~ 50 days in Tokamak)

For irradiation temperature = 500°C

- > Vacancy clusters size increases allowing diffusion of vacancies and their agglomeration
- More clusters in pure samples -> larger swelling

→ Vacancy-Oxygen complexes limits V diffusion and agglomeration

Perspectives :

Saturation of damage at high temperature ??

microstructure using PAS TEM and DRX?

Thanks:

- CEMHTI : Z. Hu (phD), C. Genevois, P. Desgardin, J. Joseph
- GEMAC : F. Jomard
- JANNuS Orsay : B. Décamps, C. Baumier, Accelerator Team
- JANNuS Saclay : M. Loyer-Prost, Accelerator Team
- ETHZ : R. Schaublin

Thank you for your attention

