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Mathematical model

Vlasov-Poisson system:
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fs : Phase-space distribution function of species s.
p : charge density.

E, ® : electric field and potential.

B : magnetic field.

gs, ms : charge and mass of a particle of species s.

€0 : vacuum permittivity.



PIC methods

@ Coupling between Lagrangian method for the Vlasov equation (based on the
integration of numerical particle trajectories) and a mesh-based discretization of
Poisson’s equation for the computation of the self-consistent field.



PIC methods

@ Coupling between Lagrangian method for the Vlasov equation (based on the
integration of numerical particle trajectories) and a mesh-based discretization of
Poisson’s equation for the computation of the self-consistent field.

o fs represented by a collection of numerical particles with positions and velocities
(xp,vp) which causes a statistical noise (£s) depending on the nb. of particles
per cell.

V(E) ~ (ﬁ) (2)

where h, = 27" is the grid discretization, d the dimension of the problem and N
is the number of particles.



PIC scheme

One iteration in time of the scheme consists of:

© Scatter: Accumulate the charge density onto the grid.
@ Mesh Solver: Compute the electric field on the grid from the charge density
according to Poisson equation:

v-E=L,  E=-ve 3)
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© Gather: Interpolate the electric field at particle positions.

@ Push: Update the particle positions and velocities from the electric field
according to Newton’s law:

dxp dvp ds
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Figure 1: Scatter and gather setps with linear shape functions.



Sparse grids

@ A set of coarse anisotropic sparse grids with discretization by = 2~ is considered
instead of the regular Cartesian grid, where | = (I, ..., ly) € N9 such that
h+..+lg=n+d—-1—k, ke[0,d—1].
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@ The set of all sparse grid has O(\ log hn\dflh;1> nodes whereas the regular grid

has O<h,7d) nodes.

o The number of sparse grids considered ranges between 64 and 136 for problems
of our iterest (corresponding to a regular grid with 1283 cells and 10243 cells).



Sparse grid PIC scheme

One iteration in time of the sparse PIC scheme consists of:

© Scatter: The charge density is accumulated on each sparse grid.
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Figure 2: Scatter step on sparse grids with
linear shape functions.

@ Mesh solver: The electric filed is computed on each sparse grid according to
Poisson equation:

v.E=? E=_veo. (5)

© Gather: The electric field is interpolated at particle positions with a linear
combination of the electric field of each sparse grid (sparse grid combination

technique [2, 4]).
Q Push: Similar to standard PIC.



o The method offers a reduction of the statistical noise because sparse grids have
larger cells than the regular grid and thus there are more particles per cell.
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o The method offers a reduction of the statistical noise because sparse grids have
larger cells than the regular grid and thus there are more particles per cell.
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@ The memory requirements are much lower because of the reduced number of
particles for equivalent statistical error.

o The computational cost of the field solver is significantly mitigated because the
sparse grids have much less grid nodes than the regular grid.

o A slight additional grid error (£g) is introduced due to the approximation with the
sparse grids [1]:

Eg ~ |logho|? 1R > R (7)
—_———

sparse standard



Numerical results

3d non linear Landau damping:

e A maxwellian distribution of electrons that are immersed in a uniform, immobile,

background of ions is considered.
o Perturbation of a plasma at an equilibrium state.

o Representation of the density at a given time:

Standard PIC, 2567 cells, Sparse grid PIC, 2567 cells,
1.677.721.600 particles 7.091.200 particles
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Figure 3: Non linear Landau damping 3d: electron density (2d x-y profile) on a 2563

particles and 7 millions (1/225 compared to the std method) for sparse PIC scheme

@ Better statistical resolution with much less particles.
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Sequential execution on CPU

Sequential time of Poisson solver
Memory storage
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Figure 4: Memory storage (particle, grid, etc.) Multigrid method for standard method,
for the standard and the sparse method. BICGSTAB Jacobi for sparse method. AMD
ZEN 3 core.

@ The difference between standard and sparse grid methods deepens the more the
grid is refined. Thus, demanding problems are more easily achievable...



Simulation on laptop

Sparse PIC, 5123 cells
180.224.000 particles
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Figure 6: Non linear Landau damping 3d on a 5123 grid: electron density (2d x-y profile). Simulation on
laptop (Inte|® Core™ i9-10885H CPU 8 cores ©2.40 GHz with 30GB of RAM memory).

e Equivalent to the standard method on a grid with 5123 cells and 7000 particles
per cell (would require roughly 1012 particles and 60TB of memory).



Sequential and shared memory parallelism

Scalability of scatter step
Sequential time per iteration
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Figure 8: Strong scalability of the scatter step
on shared memory NUMA CPUs up to 128

cores (Two CPUs AMD EPYC™ 7713 Milan).

Figure 7: Sequential time for one time iteration
(AMD ZEN 3 core).

o Scatter step takes between 90% and 95% for sparse grid methods (accumulation
on all sparse grids).

o Scatter step has a speedup up to 126 on 128 cores with parallelization strategies
tailored to sparse grid scheme (future publication).



Acceleration on GPU

o All data fit on the device (single GPU, e.g. Tesla V100 with 16GB memory [3])
for problems up to an equivalent (with respect to standard scheme) of grid with
10243 cells and more than 1000 particles per cell.

Time per iteration, 5123 cells
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Figure 9: Time per iteration on one CPU Intel® Xeon(® Gold 6140 core and Nvidia Tesla V100.
Equivalent to 4000 particles per cell.

o It is a work in progress and better acceleration may be expected.
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