Sparse grid reconstructions for Particle-In-Cell methods

M. Chung-To-Sang ${ }^{\ddagger}$, F. Deluzet ${ }^{\dagger}$, G. Fubiani ${ }^{\ddagger}$ L. Garrigues ${ }^{\ddagger}, \underline{\text { C. Guillet }}{ }^{\dagger \ddagger}$, J. Narski ${ }^{\dagger}$
\dagger Institut de Mathématiques de Toulouse (IMT)
\ddagger Laboratoire Plasma et Conversion d'énergie (LAPLACE)

May 18, 2022

Mathematical model

Vlasov-Poisson system:

$$
\left\{\begin{array}{l}
\frac{\partial f_{s}}{\partial t}+\mathbf{v} \cdot \nabla_{\mathbf{x}} f_{s}+\frac{q_{s}}{m_{s}}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f_{s}=0 \tag{1}\\
\nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}, \quad \mathbf{E}=-\nabla \Phi
\end{array}\right.
$$

- f_{s} : Phase-space distribution function of species s.
- ρ : charge density.
- E, Φ : electric field and potential.
- B : magnetic field.
- q_{s}, m_{s} : charge and mass of a particle of species s.
- ϵ_{0} : vacuum permittivity.

PIC methods

- Coupling between Lagrangian method for the Vlasov equation (based on the integration of numerical particle trajectories) and a mesh-based discretization of Poisson's equation for the computation of the self-consistent field.

```
- }\mp@subsup{f}{s}{}\mathrm{ represented by a collection of numerical particles with positions and velocities
( }\mp@subsup{\mathbf{x}}{p}{},\mp@subsup{\mathbf{v}}{p}{}\mathrm{ ) which causes a statistical noise ( (E)
per cell
```


where $h_{n}=2^{-n}$ is the grid discretization, d the dimension of the problem and N is the number of particles.

PIC methods

- Coupling between Lagrangian method for the Vlasov equation (based on the integration of numerical particle trajectories) and a mesh-based discretization of Poisson's equation for the computation of the self-consistent field.
- f_{s} represented by a collection of numerical particles with positions and velocities ($\mathbf{x}_{p}, \mathbf{v}_{p}$) which causes a statistical noise $\left(\mathcal{E}_{s}\right)$ depending on the $\mathbf{n b}$. of particles per cell.

$$
\begin{equation*}
\mathbb{V}\left(\mathcal{E}_{s}\right)^{\frac{1}{2}} \approx\left(\frac{1}{N h_{n}^{d}}\right)^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

where $h_{n}=2^{-n}$ is the grid discretization, d the dimension of the problem and N is the number of particles.

PIC scheme

One iteration in time of the scheme consists of:
(1) Scatter: Accumulate the charge density onto the grid.
(2) Mesh Solver: Compute the electric field on the grid from the charge density according to Poisson equation:

$$
\begin{equation*}
\nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}, \quad \mathbf{E}=-\nabla \Phi \tag{3}
\end{equation*}
$$

(3) Gather: Interpolate the electric field at particle positions.
(9) Push: Update the particle positions and velocities from the electric field according to Newton's law:

$$
\begin{equation*}
\frac{d \mathbf{x}_{p}}{d t}=\mathbf{v}_{p}, \quad \frac{d \mathbf{v}_{p}}{d t}=\left.\frac{q_{s}}{m_{s}}\left(\mathbf{E}+\mathbf{v}_{p} \times \mathbf{B}\right)\right|_{\mathbf{x}=\mathrm{x}_{p}} \tag{4}
\end{equation*}
$$

Figure 1: Scatter and gather setps with linear shape functions.

Sparse grids

- A set of coarse anisotropic sparse grids with discretization $h_{1}=2^{-1}$ is considered instead of the regular Cartesian grid, where $\mathbf{I}=\left(l_{1}, \ldots, I_{d}\right) \in \mathbb{N}^{d}$ such that $l_{1}+\ldots+l_{d}=n+d-1-k, k \in \llbracket 0, d-1 \rrbracket$.

- regular grid
- sparse grids
nodes whereas the regular grid has $O\left(h_{n}^{-d}\right)$ nodes.The number of sparse grids considered ranges between 64 and 136 for problems of our iterest (corresponding to a regular grid with 128^{3} cells and 1024^{3} cells).

Sparse grids

- A set of coarse anisotropic sparse grids with discretization $h_{1}=2^{-1}$ is considered instead of the regular Cartesian grid, where $\mathbf{I}=\left(l_{1}, \ldots, l_{d}\right) \in \mathbb{N}^{d}$ such that $l_{1}+\ldots+l_{d}=n+d-1-k, k \in \llbracket 0, d-1 \rrbracket$.

- sparse grids
- The set of all sparse grid has $O\left(\left|\log h_{n}\right|^{d-1} h_{n}^{-1}\right)$ nodes whereas the regular grid has $O\left(h_{n}^{-d}\right)$ nodes.
- The number of sparse grids considered ranges between 64 and 136 for problems of our iterest (corresponding to a regular grid with 128^{3} cells and 1024^{3} cells).

Sparse grid PIC scheme

One iteration in time of the sparse PIC scheme consists of:
(1) Scatter: The charge density is accumulated on each sparse grid.

Figure 2: Scatter step on sparse grids with linear shape functions.
(2) Mesh solver: The electric filed is computed on each sparse grid according to Poisson equation:

$$
\begin{equation*}
\nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}, \quad \mathbf{E}=-\nabla \Phi \tag{5}
\end{equation*}
$$

(3) Gather: The electric field is interpolated at particle positions with a linear combination of the electric field of each sparse grid (sparse grid combination technique $[2,4]$).
(9) Push: Similar to standard PIC.

- The method offers a reduction of the statistical noise because sparse grids have larger cells than the regular grid and thus there are more particles per cell.

$$
\begin{equation*}
\mathbb{V}\left(\mathcal{E}_{s}\right)^{\frac{1}{2}} \lesssim \underbrace{\left|\log h_{n}\right|^{d-1}\left(\frac{1}{N h_{n}}\right)^{\frac{1}{2}}}_{\text {sparse }} \leq \underbrace{\left(\frac{1}{N h_{n}^{d}}\right)^{\frac{1}{2}}}_{\text {standard }} \tag{6}
\end{equation*}
$$

- The memory requirements are much lower because of the reduced number of particles for equivalent statistical error.
- The computational cost of the field solver is significantly mitigated because the sparse grids have much less grid nodes than the regular grid.
- A slight additional grid error $\left(\mathcal{E}_{g}\right)$ is introduced due to the approximation with the sparse grids [1]:

- The method offers a reduction of the statistical noise because sparse grids have larger cells than the regular grid and thus there are more particles per cell.

$$
\begin{equation*}
\mathbb{V}\left(\mathcal{E}_{s}\right)^{\frac{1}{2}} \lesssim \underbrace{\left|\log h_{n}\right|^{d-1}\left(\frac{1}{N h_{n}}\right)^{\frac{1}{2}}}_{\text {sparse }} \leq \underbrace{\left(\frac{1}{N h_{n}^{d}}\right)^{\frac{1}{2}}}_{\text {standard }} \tag{6}
\end{equation*}
$$

- The memory requirements are much lower because of the reduced number of particles for equivalent statistical error.
- The computational cost of the field solver is significantly mitigated because the sparse grids have much less grid nodes than the regular grid.
- A slight additional grid error $\left(\mathcal{E}_{g}\right)$ is introduced due to the approximation with the sparse grids [1]:

$$
\begin{equation*}
\mathcal{E}_{g} \approx \underbrace{\left|\log h_{n}\right|^{d-1} h_{n}^{2}}_{\text {sparse }} \geq \underbrace{h_{n}^{2}}_{\text {standard }} \tag{7}
\end{equation*}
$$

Numerical results

3d non linear Landau damping:

- A maxwellian distribution of electrons that are immersed in a uniform, immobile, background of ions is considered.
- Perturbation of a plasma at an equilibrium state.
- Representation of the density at a given time:

Figure 3: Non linear Landau damping 3d: electron density ($2 \mathrm{~d} x-\mathrm{y}$ profile) on a 256^{3} grid with 1.6 billion particles and 7 millions ($1 / 225$ compared to the std method) for sparse PIC scheme.

- Better statistical resolution with much less particles.

Sequential execution on CPU

Figure 4: Memory storage (particle, grid, etc.) for the standard and the sparse method.

Sequential time of Poisson solver

Figure 5: Sequential time of Poisson solver.
Multigrid method for standard method,
BICGSTAB Jacobi for sparse method. AMD ZEN 3 core.

- The difference between standard and sparse grid methods deepens the more the grid is refined. Thus, demanding problems are more easily achievable...

Simulation on laptop

Sparse PIC, 512^{3} cells 180.224.000 particles

Figure 6: Non linear Landau damping 3d on a 512^{3} grid: electron density ($2 \mathrm{~d} x-y$ profile). Simulation on laptop (Intel ${ }^{\circledR}$ Core ${ }^{\text {mM }} \mathbf{i 9 - 1 0 8 8 5 H}$ CPU 8 cores $@ 2.40 \mathrm{GHz}$ with 30 GB of RAM memory).

- Equivalent to the standard method on a grid with 512^{3} cells and 7000 particles per cell (would require roughly 10^{12} particles and 60 TB of memory).

Sequential and shared memory parallelism

Figure 7: Sequential time for one time iteration (AMD ZEN 3 core).

Scalability of scatter step

Figure 8: Strong scalability of the scatter step on shared memory NUMA CPUs up to 128 cores (Two CPUs AMD EPYC ${ }^{\text {Th }} 7713$ Milan).

- Scatter step takes between 90% and 95% for sparse grid methods (accumulation on all sparse grids).
- Scatter step has a speedup up to 126 on 128 cores with parallelization strategies tailored to sparse grid scheme (future publication).

Acceleration on GPU

- All data fit on the device (single GPU, e.g. Tesla V100 with 16 GB memory [3]) for problems up to an equivalent (with respect to standard scheme) of grid with 1024^{3} cells and more than 1000 particles per cell.

Time per iteration, 512^{3} cells

Figure 9: Time per iteration on one CPU Intel $®$ Xeon $®$ Gold 6140 core and Nvidia Tesla V100. Equivalent to 4000 particles per cell.

- It is a work in progress and better acceleration may be expected.

References

F. Deluzet, G. Fubiani, L. Garrigues, C. Guillet, J.Narski, Sparse Grid reconstructions for Particle-In-Cell, in revision.
L. F. Ricketson, A. J. Cerfon, Sparse grid techniques for particle-in-cell schemes, Plasma Physics and Controlled Fusion 59 (2) (2016) 024002.

HPC resources from CALMIP Grant 2022-1125.
\square M.Griebel, The combination technique for the sparse grid solution of pde's on multiprocessor machines Parallel Process (1992). Lett. 2 61-70.
L. Garrigues, B. Tezenas du Montcel, G. Fubiani, F. Bertomeu, F. Deluzet, and J. Narski. Application of sparse grid combination techniques to low temperature plasmas particle-in-cell simulations. I. Capacitively coupled radio frequency discharges. Journal of Applied Physics, 129(15):153303, April 2021.

L. Garrigues, B. Tezenas du Montcel, G. Fubiani, and B. C. G. Reman. Application of sparse grid combination techniques to low temperature plasmas Particle-In-Cell simulations. II. Electron drift instability in a Hall thruster. Journal of Applied Physics, 129(15):153304, April 2021.

- Application of sparse grid methods to a Hall thruster in 3d (M. Chung-To-Sang) (work in progress).

