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Motivation (physics)

Dissipation models in collisional plasmas and viscous fluids.

In kinetic theory we have the Boltzmann equation:

0uf +v - Vuf + - Vuf = C(f)

In fluid theory we have the Navier-Stokes equation:
1
du+ (u-V)u+ ;Vp = vAu
V 1u=10 pressure
Here we are interested in the vanishing viscosity, vanishing

collisionality limit using numerical simulation.

Recent work using MHD, R. Chahine, KS, W. Bos. The effect of
shaping on turbulent dynamics in RFP simulations. J. Plasma Phys., 87(6), 2021
and Lagrangian transport in Hasegawa-Wakatani: arXi1v.2205.07135 2
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Motivation (maths)

Numerical methods for nonlinear PDEs.

Adaptive Galerkin discretizations have attractive features, €.g.
automatic error control using wavelet schemes.

Aim here: use space adaptivity to introduce dissipation.

Give mathematical framework and analyze dynamical Galerkin
schemes.

Introduce wavelet based regularization of hyperbolic
conservation laws thanks to adaptivity.

Numerical examples for inviscid Burgers (1D) and
incompressible Euler (2D and 3D).

Ref.: R. Pereira, N. Nguyen van yen, K. Schneider and M. Farge,
Adaptive solution of 1nitial value problems by a dynamical Galerkin scheme,
SIAM Multiscale Model. Sim., in press, arXiv:2111.04863 3
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1. Dynamical Galerkin schemes (1)

2.1. Formal definition. Let H be a Banach space, and consider the equation

(2.1) W = f(u)

where u' denotes the weak time derivative of u, where f is defined and continuous

from some sub-Banach space D(f) C H into H.
Below we shall focus on the case of the 1D Burgers equation on the torus T = R /Z:

(2.2) Oru + w0 u = VO u
which corresponds to (2.1) with
(2.3) f(u) = v0rzu — udu

The classical Galerkin discretization of (2.1) is defined as follows: for A > 0, let
Hj, be a fixed finite dimensional subspace of D(f), such that:

\JH.=H

where the adherence is taken in H, and let P, be the orthogonal projector on Hy,.
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1. Dynamical Galerkin schemes (2)

To derive this equation, we start with uy(t) € Hp(t) for every ¢, which is equivalent
to

(2.6) Py (t)un(t) = un(t).
Differentiating in time leads to:

(2.7) Py (t)uy,(t) + Py (t)un = w, ()
or equivalently

(2.8) (1 = Pu(t))un(t) = Py(t)un

which is the equation we were looking for. By adding (2.5) and (2.8) together, we
obtain the definition of the dynamical Galerkin scheme:

(2.9) uy, (t) = Py(t) f(un(t)) + Pp(t)un(t)

By comparing this differential equation with (2.4), we observe the appearance of
a new term proportionnal to the time-derivative of P;,. This is the essential ingredient
which characterizes the dynamical Galerkin scheme. 5
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1. Dynamical Galerkin schemes (3)

The above computations are valid when P, is differentiable, which is a severe restric-
tion and forbids us in particular to switch on and off dynamically some functions in
the basis of integration. To pursue we therefore need to extend the definition of the
scheme to non-differentiable P;,. For this we consider the integral formulation of (2.9),
namely

(2.13) up(t) = up(0) —I—/O P (1) f(up(7))dr —i—/o P, (T)up(7)dr.

This equation can be rewritten using a Stieltjes integral with respect to Pj:

(2.14) wn(t) = un(0) + /0 Po () (un (7))dr + /0 AP, (7 )un (7)

which we call the integral formulation of the dynamical Galerkin scheme.

This equation makes sense as soon as P}, has bounded variation, which gives it a
much wider range of applicability than (2.9), allowing in particular discontinuities in
P;,. To solve such an equation we need to resort to the theory of generalized ordinary
differential equations.
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1. Dynamical Galerkin schemes (4)

2.2. Existence and uniqueness of a solution to the projected equations.
The rigorous setting for integral equations such as (2.14) involving Stieltjes integrals
is explained in detail in the book [9]. An alternative introduction can be found in [3].
We summarize the main consequences of the theory for our problem in the following

THEOREM 2.2. Assume that Py(t) : [0,T] — is BV and left-continuous, that
P;,(0)up(0) = up(0) (i.e. up(0) € Hy(0)), and that f : HY — H is locally Lipschitz.
Then

(i) There exists T*, 0 < T* < T, such that the integral equation

(215)  un(t) = un(0) + /O Pa(r) f (un(r))dr + /0 AP, ()un(7)

has a unique BV, left-continuous solution uy, : [0,T*] — H}.
(ii) This solution satisfies

(2.16) Vt € [O,T], Ph(t)uh(t) = uh(t)
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1. Dynamical Galerkin schemes (5)

(ii1) up is continuous at any point of continuity of P, and more generally for any
t:

(2.17) up(t*) — un(t) = (Pu(t™) — Pau(t))un(t)
or equivalently
(2.18) uh(t+) = Ph(t+)uh(t)

(iv) The energy equation (2.10) for smooth P, is replaced in general by:

1
(2.19) §(||Uh(75)||2 — [[un(0)]]?) =
t
1
[ ) une)dr =5 37— Pale)uneo) P
0 {ilt:<t}
where (t;)icn are the points of discontinuity of Pp.

Proof: Schauder-Tichonov fixed point theorem and theorems from ref.
[9] S. Schwabik. Generalized ODEs. World Scientific, 1992.



2. Wavelet representation

AixMarseille
universite

Wavelets
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FIGURE 2. Space-scale representation of an orthogonal spline wavelet at three different
scales and positions, i.e. Y¥e¢, ¥7.32, ¥s8.108- The modulus of the Fourier transform of three
corresponding wavelets is shown in the inset (top, left).
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Inviscid Burgers

() (b) (©)

Fi1c. 5. CVS-filtered Galerkin truncated inviscid Burgers equation using complez-valued wavelets
(Kingslets, in black) together with the non-dissipative Galerkin truncated solution (blue) at times

t = 0.1644, 0.1793 and 0.3. The solutions are periodically shifted to the right, so that both the

resonances and the shocks can be easily seen.

1
(9tu+§8mu2=0 for z€T and ¢t>0

N.B.: Galerkin truncated Burgers conserves energy and exhibits oscillations 10
(thermal noise due to energy equipartition).
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2D incompressible Euler

(1l oscillations = thermal noise

14 15 16 17 1.8

Fic. 8. Filtering of 2D incompressible Euler using complez-valued wavelets (Kingslets). Left:
Contours of the Laplacian of vorticity Aw at t = 0.71. The Galerkin truncated solution is shown
in gray, the CVS solution is given in black. Right: 1D cut of the Laplacian of vorticity for the
oscillatory Galerkin truncated solution and the wavelet-filtered smooth solution. From [33].

Ou+(u-V)u =—-Vp for ze€T? and ¢t>0
Veu=0

11
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2D incompressible Euler
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Fic. 9. Filtering of 2D incompressible Euler using complez-valued wavelets (Kingslets). Evo-

lution of enstrophy 1/ 2||w||% for the Galerkin truncated case and the adaptive wavelet filtered case
using Kingslets. From [33].

N.B.: Galerkin truncated Euler conserves enstrophy and exhibits oscillations

. . .- 12
(thermal noise due to enstrophy equipartition).
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3D incompressible Euler

Galerkin truncted Wavelet regularized Navier-Stokes

Fic. 11. Vorticity isosurfaces, |w| = M + 40 (where M is the mean value and o the standard
deviation of the modulus of vorticity of NS) for 8D incompressible Euler using Galerkin truncated
Euler (Euler, left), wavelet filtered Euler (CVS, center) and Navier-Stokes (NS, right) at time
t/T =3.4. From [15].

Ou+ (u-V)u = —-Vp for ze€T? and t>0
Veu=0

13
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3D incompressible Euler
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Fic. 10. Energy (left) and enstrophy (right) evolution for 3D incompressible Euler using for
Galerkin truncated Euler (Euler), wavelet filtered Euler (CVS) and Navier-Stokes (NS). HV and EV
stand for hyperviscous regularization and EV for Euler-Voigt, respectively, which are not discussed

here. From [13].

N.B.: Galerkin truncated Euler conserves energy and exhibits oscillations 14
(thermal noise due to energy equipartition).
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Conclusions

Mathematical framework for analyzing dynamical Galerkin discretizations of
evolutionary PDEs.

Nondifferentiable projection operators can introduce energy dissipation.
Mathematical explanation for their regularizing properties due to dissipation.

Adaptivity not only useful to reduce CPU time/memory, but also for introducing
dissipation (regularizing effect).

Numerical experiments: 1D Burgers convergence towards the entropy solution.
2D and 3D Euler, thermal noise is removed, but no reference solution is
available.

Perspectives are studies of MHD, Hasegawa-Watakani and Vlasov equations
using adaptive Galerkin discretizations, in particular wavelet-based schemes and
their regularization properties introducing viscous dissipation.

Ref.: R. Pereira, N. Nguyen van yen, K. Schneider and M. Farge,
Adaptive solution of initial value problems by a dynamical Galerkin scheme,
SIAM Multiscale Model. Sim., in press, arXiv:2111.04863

15
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Perspectives: FR-FCM 1n 2022

Multiscale Inertial Particle Transport in the Edge Plasma of
tokamaks (‘MIPTEP”)

High resolution numerical simulations using the Hasegawa-Wakatani
model, which governs cross-field transport by electrostatic drift waves
in magnetically confined plasmas

Impurity transport both fluid and inertial particles (modeling heavy
atoms)

Multiscale statistical analyses of inertial particle distributions

Further develop wavelet-based adaptive proper orthogonal
decompositions for reduced order models

Data driven approaches (superresolution using wavelets, CNN for

synthesizing artificial particle/impurity distributions)
16





