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Motivation (physics) 

Dissipation models in collisional plasmas and viscous fluids. 
 

In kinetic theory we have the Boltzmann equation: 

In fluid theory we have the Navier-Stokes equation: 

Here we are interested in the vanishing viscosity, vanishing  
collisionality limit using numerical simulation. 
 

Recent work using MHD, R. Chahine, KS, W. Bos. The effect of  
shaping on turbulent dynamics in RFP simulations. J. Plasma Phys., 87(6), 2021 
and Lagrangian transport in Hasegawa-Wakatani: arXiv.2205.07135 
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Motivation (maths) 

Numerical methods for nonlinear PDEs. 

Adaptive Galerkin discretizations have attractive features, e.g. 
automatic error control using wavelet schemes. 

Aim here: use space adaptivity to introduce dissipation. 

Give mathematical framework and analyze dynamical Galerkin 
schemes. 

Introduce wavelet based regularization of hyperbolic 
conservation laws thanks to adaptivity. 

Numerical examples for inviscid Burgers (1D) and 
incompressible Euler (2D and 3D).  

Ref.: R. Pereira, N. Nguyen van yen, K. Schneider and M. Farge, 
Adaptive solution of initial value problems by a dynamical Galerkin scheme,  
SIAM Multiscale Model. Sim., in press, arXiv:2111.04863 
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1. Dynamical Galerkin schemes (1) 



1. Dynamical Galerkin schemes (2) 
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1. Dynamical Galerkin schemes (3)



7	

1. Dynamical Galerkin schemes (4)
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1. Dynamical Galerkin schemes (5)

Proof: Schauder-Tichonov fixed point theorem and theorems from ref.  
           [9] S. Schwabik. Generalized ODEs. World Scientific, 1992.  



2. Wavelet representation

ji(x) = 2j/2 (2jx� i)
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Inviscid Burgers 

N.B.: Galerkin truncated Burgers conserves energy and exhibits oscillations  
(thermal noise due to energy equipartition). 



11	

2D incompressible Euler 

oscillations = thermal noise
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2D incompressible Euler 

N.B.: Galerkin truncated Euler conserves enstrophy and exhibits oscillations  
(thermal noise due to enstrophy equipartition). 

Enstrophy 
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3D incompressible Euler 

Galerkin truncted              Wavelet regularized               Navier-Stokes 
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3D incompressible Euler 

N.B.: Galerkin truncated Euler conserves energy and exhibits oscillations  
(thermal noise due to energy equipartition). 

Energy Enstrophy 
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Conclusions 

Mathematical framework for analyzing dynamical Galerkin discretizations of 
evolutionary PDEs. 

Nondifferentiable projection operators can introduce energy dissipation. 

Mathematical explanation for their regularizing properties due to dissipation. 

Adaptivity not only useful to reduce CPU time/memory, but also for introducing 
dissipation (regularizing effect). 

Numerical experiments: 1D Burgers convergence towards the entropy solution. 
2D and 3D Euler, thermal noise is removed, but no reference solution is 
available. 

Perspectives are studies of MHD, Hasegawa-Watakani and Vlasov equations 
using adaptive Galerkin discretizations, in particular wavelet-based schemes and 
their regularization properties introducing viscous dissipation. 

Ref.: R. Pereira, N. Nguyen van yen, K. Schneider and M. Farge, 
Adaptive solution of initial value problems by a dynamical Galerkin scheme,  
SIAM Multiscale Model. Sim., in press, arXiv:2111.04863 
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Perspectives: FR-FCM in 2022 

Multiscale Inertial Particle Transport in the Edge Plasma of 
tokamaks (‘MIPTEP’) 

High resolution numerical simulations using the Hasegawa-Wakatani 
model, which governs cross-field transport by electrostatic drift waves 
in magnetically confined plasmas 

Impurity transport both fluid and inertial particles (modeling heavy 
atoms) 

Multiscale statistical analyses of inertial particle distributions 

Further develop wavelet-based adaptive proper orthogonal 
decompositions for reduced order models 

Data driven approaches (superresolution using wavelets, CNN for  
synthesizing artificial particle/impurity distributions) 




