

Overview of plasma-tungsten surfaces interactions on the divertor test sector in WEST during the C3 and C4 campaigns

<u>M Diez¹</u>, M Balden², I. Bogdanović Radović³, S Bresinzek⁴, E Bernard¹, A Durif¹, N Fedorczak¹, M Firdaouss¹, E. Fortuna⁵, J Gaspar⁶, J.P Gunn¹, A. Hakola⁷, T Loarer¹, C Martin⁸, M Mayer², P Reilhac¹, M Richou¹, E Tsitrone¹ and the WEST team

- ¹ IRFM, CEA, France
- ² Max-Planck-Institut für Plasmaphysik, Germany
- ³ Ruder Boskovic Institute, Croatia
- ⁴ Institut für Energie- und Klimaforschung-Plasmaphysik, Germany

⁵ Warsaw University of Technology, Warsaw, Poland
⁶ IUSTI, Aix Marseille University, France
⁷ VTT Technical Research Centre of Finland, Finland
⁸ PIIM, Aix Marseille University, France

14 ITER-like PFUs having their own history

• Specific features :

- W grade and manufacturing processes
- Chamfered/unchamfered poloidal edge
- No toroidal bevel in phase 1 as foreseen in ITER
- Different campaign/plasma exposure
- PFUs exposed with vertical misalignment > ITER specifications (up to 0.8mm)

Divertor test sector

1. Divertor configuration and operating conditions during WEST phase I

Divertor heat load pattern modulated by magnetic field ripple
Significant plasma exposure of the targets during C3 and C4

2. Post-exposure PFCs characterization

Local modifications of W (cracking, melting, optical hot spots)Material migration

3. Summary and perspectives

1. Divertor configuration and operating conditions during WEST phase I

Divertor heat load pattern modulated by magnetic field ripple
Significant plasma exposure of the targets during C3 and C4

2. Post-exposure PFCs characterization

Local modifications of W (cracking, melting, optical hot spots)
Material migration

3. Summary and perspectives

Divertor heat load pattern modulated by magnetic field ripple

- > 2 strike points (ISP,OSP) in one target
- ▶ Modulated plasma pattern due to the ripple effect and variation of the angle of incidence
- ► Inner/outer asymmetry : OSP most loaded area (heat load distribution 1/4 ISP, 3/4 OSP) → ITER-like PFUs exposed to 1 max ISP/OSP

Divertor heat load pattern simulated by PFCFlux for C4 (shot#55987 at 10s)

Significant plasma exposure of the targets during C3 and C4

6

Operating conditions during C3 and C4

- About 5,5 hours of plasma (2113 shots > 1s)
- Including a dedicated helium campaign (45min)
- L mode but with significant nb of transients (>2000 disruptions)
- 16 boronizations in total (3 in C3 ; 13 in C4)
- Heating power from 1 to 8 MW

From the point of view of the targets

- Subjected to heat loads up to 6 MW/m² (top surface)
- Base temperature : 70°C
- T_{surf} (bulk ITER-like PFU) < T_{surf} (inertial W coating tiles) = 300-700°C
- Thermal cycling from 70°C up to/above DBTT temperature (300-400°C for W)

Divertor configuration and operating conditions during WEST phase I
Divertor heat load pattern modulated by magnetic field ripple
Significant plasma exposure of the targets during C3 and C4

2. Post-exposure PFCs characterization

Local modifications of W (cracking, melting, optical hot spots)
Material migration

3. Summary and perspectives

Misaligned edges directly exposed to plasma are prone to local cracking/melting

- ▶ Regularly spaced cracks (≈0.4mm) and visual evidence of local melting at cracks edges on misaligned edges
- Crack length (top surf) consistent with misalignment m_{PFU} at ISP
- No crack propagation between C3 and C4
- <u>Possible cause</u>: brittle cracking of "cold" W (<DBTT) due to transients

- In good agreement with simulation [Durif, Phy Scripta 2022]
 - Predict the number of thermal cycles to reach brittle fracture
 - Formation and propagation of cracks
- Next step for confirmation: post-mortem
- Leading edges in ITER protected by bevel -> WEST phase 2

Optical Hot Spots (OHS) predictions confirmed experimentally in the WEST tokamak !

Nest

[Diez, NF 2020]

<u>Optical Hot Spot</u> = localized plasma-wall interaction (heat deposition on an isolated point) resulting from penetration of charged particles into the toroidal gaps

Observations

- Occurred where it was predicted by ion orbit modelling [Gunn, NF 2017]
- More likely caused by transient high flux events [Gunn, NME 2021]

Post C3 – OSP area Po OSmm OHSC3 Side view MB26 WER1002

[Diez, NF 2021]

Post C4 – OSP area

Evolution between C3 and C4

- Based on C3 observations, efforts were made to better align toroidal gaps in C4
- But new OHS formed on MB corner
- In SP areas : OHS formed in C3 did not evolve but were covered by thick deposits into the poloidal gaps

Impact for ITER ?

- Local melting expected on MB corner at every ELM [Gunn, NF 2017]
- Area of research during WEST phase 2

9

Divertor configuration and operating conditions during WEST phase I
Divertor heat load pattern modulated by magnetic field ripple
Significant plasma exposure of the targets during C3 and C4

2. Post-exposure PFCs characterization

Local modifications of W (cracking, melting, optical hot spots)
Material migration

3. Summary and perspectives

Material migration investigated through non destructive characterization of entire targets

Cea

Material migration investigated through non destructive characterization of entire targets cea 0 mm Net erosion HFS **Thick deposits** MB 1-13 MB 14-17 220 mm MB 18-19 270 mm MB 23-29 333 mm MB 32-35 S 420 mm **Colored thin** 8 films 583,5 mm (fS Photograph of the test divertor sector taken after C4 Lower divertor position 's'

Morphology

- Multilayer structure
- Each layer has a different morphology, thickness and composition
- Same type of deposits on W-coated tiles and ITER-like PFUs

Content

Main elements : W, O, C, B + oxides

- B: 16 boronizations in C3+C4
- C: PFCs substrate
- O: during plasma exposure or/and air exposure

Traces of :

- stainless steel Fe, Ni, Cr (walls)
- Ag (Faraday screen of the ICRH antenna)
- Cu (LH antennas, PFC substrate)

Images of deposits found on the ITER-like PFUs

Multi-scale techniques to measure the thickness of the deposits (top surface)

Deposition of thick layers in the shadowed HFS of the divertor ; moderate in LFS

In-situ photograph of test divertor sector taken right after the end of C4

- Thickness > $10\mu m$ after $\approx 5.5 h$ of plasma
- Campaign-averaged deposition rate at least 0.5 nm/s
- Thick deposits may cause operational issues (flaking)

Local effects occur due to surface roughness

16

- Deposited layers found in the valleys
- Same type of deposits in the valleys as in HFS
- W marker layer $(1-2\mu m)$ totally eroded at top of the hills

 \rightarrow net erosion rate W coating at ISP/OSP: 0,1-0,5 nm/s (\approx AUG)

Surface roughness of W-coating tiles \approx 2-3 μm

622

Level of O, B and D in the redeposited layers in good agreement with the operation

Impurities content

- ▶ O, B found in the HFS
 - \rightarrow good correlation with FIB/SEM and confocal microscopy results
- Expansion of redeposition area between C3 and C4
- Amount of B multiplied by 3 between C3 and C4
 - ightarrow good correlation with the operation and conditioning

Deuterium content

- D inventory mainly found in the deposits
- Shift of D deposition between C3 and C4
- ► Amount of D multiplied by 3 between C3 and C4 in the deposits on the W coated tiles ↔ more porosity in C4 deposits, acting as traps for D?

Similar results obtained on ITER-like PFUs (work on going ; not shown here)

monoblock number

First evidence of He implantation in the divertor targets in WEST !

Helium campaign

- ▶ 45 min He plasma exposure
- ▶ Goal : W fuzz formation at OSP on W-coated tiles
- Conditions required for W fuzz formation marginally reached (T, E_{inc} He fluence)

→ Observations so far:

- He implantation (10 at.%) in OSP erosion-dominated area (W-coated tiles)
- ▶ No indication of W fuzz or He nanobubbles so far in OSP area
- However, observation of nanocavities filled with gas in W dust collected after C4

[[]Private comm., C. Arnas, PIIM]

18

Divertor configuration and operating conditions during WEST phase I
Divertor heat load pattern modulated by magnetic field ripple
Significant plasma exposure of the targets during C3 and C4

2. Post-exposure PFCs characterization

Local modifications of W (cracking, melting, optical hot spots)
Material migration

3. Summary and perspectives

Local modifications

Local cracking and melting were evidenced on exposed poloidal leading edges in addition to optical hot spots, although it was not detrimental for the operation of WEST.

→ will it be an issue for ITER with toroidal-bevelled targets ? Efforts on simulation are required ! WEST phase 2 will also give some answers

Material migration

- Deposition was mainly found in HFS of the divertor with W, O, B, C-rich layers with thickness >10 μm. The large source of light impurities (C,O) is not clearly understood. D has largely diffused into the deposits.
- A net erosion rate of 0,1-0,5 nm/s was found at ISP/OSP, despite local effects due to surface roughness.
- ► Although there is no clear evidence of W fuzz formation so far, helium is shown to be implanted in OSP eroded area in C4 marker tiles (≈10%)

 \rightarrow investigation continues through samples analysis and future cutting of bulk PFU planned this year

► Thick deposited layers up to 10µm were found into the poloidal gaps while plasma-W interactions were observed into toroidal gaps (work on going, not presented here)

 \rightarrow modelling of W transport needed !

Thank you for your attention